
Spin-resolved correlations and ground state of a three-dimensional electron gas:
Spin-polarization effects

Krishan Kumar,1,2 Vinayak Garg,1 and R. K. Moudgil1,*
1Department of Physics, Kurukshetra University, Kurukshetra-136 119, India

2P.G. Department of Applied Physics, S. D. College, Ambala-Cantt.-133 001, India
�Received 2 September 2008; revised manuscript received 6 January 2009; published 6 March 2009�

We have studied the spin-resolved correlations in a three-dimensional electron gas having arbitrary spin
polarization � by using the static and dynamical versions of the self-consistent mean-field approximation of
Singwi, Tosi, Land, and Sjölander, the so-called STLS and qSTLS approaches, respectively. The spin-resolved
pair-correlation functions and corresponding correlation energies, static density and spin susceptibilities, and
ground-state energy are calculated over a wide range of electron number density and selected �. Wherever
available, our results are compared directly with the recent quantum Monte Carlo studies of Ortiz et al. and
Zong et al. The qSTLS approach is found to be in better agreement with the simulation data. As an interesting
result, it is found that both the qSTLS and STLS methods underestimate the parallel spin-correlation energy
while the antiparallel spin contribution is overestimated to the extent that the total correlation energy is in
excellent agreement with the simulation data. Furthermore, a direct comparison among the results of ground-
state energy at different � reveals, in qualitative agreement with the simulation studies, the existence of a
continuous spin-polarization transition on decreasing electron density.
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I. INTRODUCTION

The homogeneous three-dimensional electron gas �3DEG�
embedded in a rigid positive charge neutralizing background
�the so-called jellium model� has been serving as a basic
theoretical model in describing the electronic properties of
metallic solids.1 This model has also proved useful in the
development of theoretical methods for materials involving
inhomogeneous electron systems; for instance, it is used as
input for the local density and local spin-density approxima-
tions of the density-functional theory.2 At T=0 K, the
ground state of such a 3DEG model is characterized com-
pletely by the electron number density n. To study the spin
dependence of electronic ground state, it is customary to in-
troduce spin polarization � �=�n↑−n↓� /n� as second indepen-
dent parameter of the model; n� denotes the electron density
for the spin component � and n=n↑+n↓. In literature,3–6 the
3DEG model has been extensively studied for �=0 within
different many-body schemes over a wide coupling regime.
During the last couple of years, there has been growing in-
terest in exploring the role of � in determining the electronic
ground state. The interest is driven mainly by the recent
observation7 of a ferromagnetic state in lanthium doped cal-
cium hexaboride. As an important work in this regard, Ortiz
et al.8 have extended the quantum Monte Carlo �QMC�
study9–12 of the 3DEG model to include the states of arbi-
trary spin polarization. Among other results, it has been pre-
dicted that there occurs a continuous spin-polarization tran-
sition with decreasing electron density from the
paramagnetic ��=0� liquid to the ferromagnetic ��=1� liquid.
More precisely, the partially spin-polarized states were found
to be stable in the density window 20�5�rs�40�5, with
the ferromagnetic liquid becoming stable for rs�40�5.
Here, rs= �4�na0

�3 /3�−1/3 is the usual electron-density param-
eter, with a0

� being the effective Bohr radius. Owing to a
weak � dependence of ground-state energy, Zong et al.13

have recently obtained relatively more accurate estimates for
it by using diffusion QMC method �with backflow wave
functions12 and twist averaged boundary conditions14�, and
thereby predicted that the continuous polarization transition
occurs at a much lower density rs�50�2, and the fully
polarized phase becomes stable at the freezing density rs
�100.

On the theory side, Bloch15 predicted a long time back an
abrupt polarization transition in 3DEG at rs�5.45 by using
the Hartree-Fock approximation �HFA�. Later on, there
appeared16,17 better estimates of ground-state energy in an
attempt to incorporate correlations beyond the HFA and it
was found that �i� correlations acted to increase the critical rs
for polarization transition and �ii� their inclusion beyond
random-phase approximation changed an abrupt transition
into a continuous one.

Until recently, only the total correlation energy of the
3DEG was known through QMC simulations. However, as
an important development in the electron-gas problem, Ortiz
et al.8 have also determined the QMC spin-resolved pair-
correlation functions for 0.8�rs�10 at �=0. These QMC
data have been fitted accurately by Gori-Giorgi and
co-workers.18,19 Furthermore, Gori-Giorgi and Perdew20

have recently determined the spin resolution of correlation
energy �into the ↑↑, ↓↓, and ↑↓ contributions� at arbitrary �
and rs as an interpolation between high-density and low-
density limits, consistent with the �=0 QMC data of Ortiz et
al.8 With the availability of these QMC results, it would be
interesting to compare theory directly with these data, as
such a comparison would be useful in judging the quality of
theory in dealing with the Coulomb correlations explicitly.
Davoudi et al.21 have recently determined theoretically the
spin-resolved pair-correlation functions for the �=0 and 1
states, and the results have been compared with the QMC
data. However, to the best of our knowledge, theory has not
yet been directly tested against the available QMC results of
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spin-resolved correlation energy. Therefore, in the present
work, we intend to investigate the spin-resolved correlations
and related ground-state properties of the 3DEG having ar-
bitrary �. Taking into consideration the reasonable success22

of the mean-field approximation of Singwi, Tosi, Land, and
Sjölander �STLS� �Ref. 23� in reproducing the QMC corre-
lation energy at �=0, we shall employ the STLS approach to
deal with the electron correlations at arbitrary �. We shall
also incorporate correlations beyond the STLS approach by
considering their dynamical nature within the mean-field ap-
proximation of Hasegawa and Shimizu24—commonly re-
ferred in literature as the quantum STLS �qSTLS� approach.
Wherever available, we shall compare our results with the
recent QMC data.

In Sec. II, a brief account of theoretical formalism is
given. In Sec. III, results and discussion are presented. We
conclude our study with a brief summary in Sec. IV.

II. THEORETICAL FORMALISM

To probe the correlational properties, we make use of the
dielectric formulation where the density response of the elec-
tron system to an external space-time dependent potential
V�

ext�r , t� plays the role of a central quantity. For an arbitrarily
spin-polarized electron system, the linear density response
function �����q ,�� is defined as25

	�
ind�q,�� = �

��

�����q,��V��
ext�q,�� , �1�

where 	�
ind�q ,�� is the induced electron number density for

the spin component �. To determine 	�
ind�q ,��, we use the

mean-field approximation where the system of noninteract-
ing electrons is assumed to respond to the external potential
V�

ext�q ,�� plus an induced potential V�
ind�q ,��. Accordingly,

	�
ind�q ,�� can be written as

	�
ind�q,�� = ��

0�q,���V�
ext�q,�� + V�

ind�q,��� , �2�

where ��
0�q ,�� is the density response function for noninter-

acting electrons26 having spin � and

V�
ind�q,�� = �

��

	��
ind�q,��V�q��1 − G����q,��� . �3�

Here, V�q� is the bare Coulomb interaction potential while
G����q ,�� are the spin-resolved local-field correction �LFC�
factors which represent the effect of correlations between
electrons of spin � and ��. In the qSTLS approximation,24

G����q ,�� are given as

G����q,�� = −
1

�n�n��
	 dq�

�2��3

��
0�q,q�,��V�q��
��

0�q,��V�q�


�S����
q − q�
� − ����� , �4�

where S����q� are the spin-resolved static density structure
factors and ��

0�q ,q� ,�� is the inhomogeneous noninteracting
density response function24 for the spin component �. Using
Eqs. �1�–�3�, the density response components �����q ,�� are
readily obtained as

�����q,�� =
��

0�q,������� + �− 1�������̄�̄��q,����̄
0�q,���

D�q,��
,

�5�

where �̄ denotes the spin orientation opposite to �,
�����q ,��=V�q��1−G����q ,��� are the spin-resolved effec-
tive Coulomb potentials, and D�q ,�� is defined as

D�q,�� = �1 − �↑↑�q,���↑
0�q,����1 − �↓↓�q,���↓

0�q,���

− �↑↓�q,���↓↑�q,���↑
0�q,���↓

0�q,�� . �6�

However, S����q� are related to �����q ,�� through the
fluctuation-dissipation theorem1 as

S����q� = −


��n�n��
	

0

�

d������q,��� . �7�

This implies that �����q ,�� have to be obtained numerically
from the self-consistent solution of the set of Eqs. �4�, �5�,
and �7�. The � integration in Eq. �7� is performed along the
imaginary � axis to avoid the difficulty of plasmon poles on
the real � axis.27

The ground-state energy Eg �per electron�, the quantity of
central interest for determining the equilibrium spin polariza-
tion, is obtained in accordance with the ground-state energy
theorem28 as

Eg =
1

n
�
�

n�

�6�n��2/3

2m� + 	
0

e2

d�
Eint���

�
, �8�

where the first term is the free-electron kinetic energy while
the second term represents the potential energy �Epot�.
Eint���= �E↑↑

int���+E↓↓
int���+E↑↓

int���� /n is the interaction energy
per electron for a 3DEG with Coulomb coupling � and m� is
the effective electron mass. The spin-resolved interaction en-
ergy E���

int ��� is given by

E���
int ��� =

�n�n��

�1 + �����
�
q�0

V�q��S����q,�� − ����� . �9�

Thus, we see that the calculation of Eg requires only the
knowledge of S����q ,��.

It is appropriate to mention here that one can obtain the
corresponding STLS formalism simply by replacing the
above G����q ,�� by their behavior in the limit, →0,
wherein they become static and are given as

G����q� = −
1

�n�n��
	 dq�

�2��3

q . q�

q�2 �S����
q − q�
� − ����� .

�10�

Furthermore, we wish to point out that in the qSTLS ap-
proach, G↑↓�q ,���G↓↑�q ,��. This asymmetry of the LFC
factor, which arises directly from the factor
���

0�q ,q� ,�� /��
0�q ,��� in Eq. �4�, would in turn lead to an

asymmetric �����q ,��. However, �����q ,�� must be sym-
metric under an interchange in spin index. We overcome this
problem by taking the antiparallel spin LFC factor as an
average of G↑↓�q ,�� and G↓↑�q ,��. However, there is no
such problem with the STLS G↑↓�q�.
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III. RESULTS AND DISCUSSION

Throughout the numerical results presented, lengths are in
units of the inverse up-spin Fermi wave vector �kF↑�−1, ener-
gies in units of effective Rydberg �1 Ry�=e2 / �2a0

���, and 
=1. We begin with the discussion of spin-resolved correla-
tion functions.

A. Spin-resolved correlation functions

Equations �4�, �5�, and �7� are solved numerically in an
iterative manner for S↑↑�q�, S↓↓�q�, and S↑↓�q�, and the solu-
tion was accepted when the convergence in G↑↑�q , ���,
G↓↓�q , ���, and G↑↓�q , ��� �at each of the q and � values�
was better than 0.0001%. However, it became almost impos-
sible to find the self-consistent solution at and above a criti-
cal rs, say rs

c; for instance, rs
c�7 at �=0. The value of rs

c was
seen to decrease gradually with increasing �. An analysis of
the numerical calculation reveals that the problem of non-
converging G����q , ��� is related to the emergence of poles
in �����q , ��� at a finite � �say �0�q�� over a definite q
interval, 0�q�qc. A similar kind of numerical instability
was earlier identified by Moudgil et al.29 in a two-
dimensional electron gas. Obviously, the presence of poles in
�����q , ��� constitutes an unphysical result because such
poles imply an excitation of the system at imaginary frequen-
cies. However, we find concurrently that the “direct calcula-
tion” of total charge-charge �CC� structure factor SCC�q�,
which is possible only at �=0 and 1, does not exhibit any
poles, and therefore, the self-consistent SCC�q� can be deter-
mined for rs beyond rs

c. In the direct calculation, SCC�q� is
obtained through the computation of total CC density re-
sponse function, �CC�q ,��=���������q ,��, whose calcula-
tion at �=0 and 1 involves only one independent LFC factor.
Naturally, SCC�q� obtained from the direct calculation must
match �at any rs� with the one determined through the self-
consistent �����q , ���. In terms of its components, SCC�q� is
given as

SCC�q� =
1 + �

2
S↑↑�q� +

1 − �

2
S↓↓�q� + �1 − �2S↑↓�q� .

This relation, in turn, suggests that there must occur, for rs
�rs

c, some sort of cancellation among the �singular� response
functions �↑↑�q , ���, �↓↓�q , ���, and �↑↓�q , ��� so as to have
a nonsingular �CC�q , ���. Keeping this point in mind, we
make an attempt to handle the problem of poles in
�����q , ��� in a purely mathematical sense. We may mention
that the poles of �����q , ��� can only be located numerically.
Taking into account the existence of a pole at �=�0�q� on
the imaginary � axis, it is straightforward to show30 that Eq.
�7� gets modified as

S����q� = −
1

��n�n��
	

0

�

d�������q,��� −
a���

� − �0�q�

+
a���

� + �0�q�
� . �11�

Here, a���= ������q , ��0�D�q , ��0�� /D��q , ��0� is the first-
order residue of �����q , ��� at �=�0�q�, with D��q , ��0� be-

ing the first derivative of D�q , ��� at �=�0�q�. Using the
modified S����q� �viz. Eq. �11��, we were able to find the
self-consistent solution for rs beyond rs

c. As an important
check on the accuracy of our method for dealing with poles,
we found that SCC�q� obtained through the self-consistent
S����q� and that via the direct calculation of �CC�q , ���
matched perfectly within the convergence tolerance. In the
STLS calculation too, �����q , ��� exhibits similar kind of
poles and these are treated by using the procedure as given
above.

We depict in Figs. 1�a�–1�c� the self-consistent S����q� at
�=0, viz. S↑↑�q� �=S↓↓�q�� and S↑↓�q�, for rs=1, 5, and 10 in
both the qSTLS and STLS approaches. The resulting total
CC structure factor SCC�q� �i.e., the one computed from the
self-consistent S����q�� is also shown. For direct comparison,
the QMC data of Ortiz et al.8 �as fitted by Gori-Giorgi et
al.18� is shown by symbols. At low rs, both the qSTLS and
STLS results are in very good agreement with the QMC data.
However, the extent of agreement somewhat begins dimin-
ishing with increasing rs. Apart from this quantitative differ-
ence, both the qSTLS and STLS theories predict, in complete
contrast with the QMC results, a sharp peak in S����q� at
rs=10. In contrast, the corresponding SCC�q� remains a
smooth function of q, and in fact, it is in very good agree-
ment with the QMC data �see Fig. 1�c��. This feature of
SCC�q� clearly demonstrates that there is a perfect cancella-
tion between the peaks in S↑↑�q� and S↑↓�q�. Furthermore, we
detect that the appearance of a spurious peak in S����q� at
rs=10 has its direct relation with the evolution of poles in
�����q , ���. In fact, S����q� starts exhibiting this kind of
peak for rs�rs

c itself. To elaborate this relationship, we have
plotted in Fig. 2 the qSTLS results of �0�q� for �=0 and 0.2
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FIG. 1. The spin-resolved structure factors S����q� vs q /kF↑ for
�=0 at indicated rs. The curve marked “CC” is the total charge-
charge structure factor SCC�q�. The symbols �, �, and � represent,
respectively, the QMC data of Ortiz et al. �taken from Ref. 18� for
S↑↑�q�, S↑↓�q�, and SCC�q�.
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at rs=8 and 10. Apparently, �����q , ��� has poles over a
definite q interval 0�q�qc, and this interval widens with
increasing rs ��� at a given � �rs�. Particularly, we wish to
point out that both qc and �0�qc� tend to zero for rs→rs

c at a
given �. It can also be noted from Figs. 1�c� and 2 that
S����q� has peak exactly at q=qc. Qualitatively similar kind
of behavior of �0�q� is found in the STLS approach. Al-
though not reported here, S����q� and SCC�q� are seen to have
a similar rs dependence at nonzero � also.

Above results on S����q� and SCC�q� seem to imply that,
while the qSTLS and STLS theories fail completely in han-
dling the spin-resolved correlations for rs�rs

c, they still yield
a fairly good account of the spin-averaged correlations. Nev-
ertheless, our study explicates the mechanism which leads to
the eventual failure of these theories in treating the spin-
resolved correlations for rs�rs

c.
Next, we compute the spin-resolved pair-correlation func-

tions g����r� by taking the inverse Fourier transform of self-
consistent S����q�. Figures 3�a�–3�c� contain the numerical
results of g↑↑�r�, g↑↓�r�, and the spin-averaged correlation
function g�r�= �g↑↑�r�+g↑↓�r�� /2 at �=0 for rs=1, 5, and 10
in both the qSTLS and STLS approaches. The QMC results
of Ortiz et al.8 �as fitted by Gori-Giorgi et al.18� are shown by
symbols. Quite generally, it is noted that the qSTLS results
of both g����r� and g�r� compare more favorably with the
QMC data. Improvement over the STLS predictions is seen
to become increasingly visible, particularly at small r, with
the increasing rs. Among notable features, the qSTLS results
satisfy the condition of positive definiteness except for the
little negative behavior of g↑↑�r� at small r for low rs ��3�.
In contrast, the STLS g↑↑�r� remains negative at small r over
the rs range shown and, in addition, even g�r� and g↑↓�r� start
assuming negative values at small r for rs�5. The better
quality of the qSTLS results is attributed to the inclusion of
the dynamics of correlations through a frequency-dependent
LFC factor.

In Fig. 4, we illustrate the � dependence of g����r� in the
qSTLS approach at rs=4—a value smaller than rs

c for the
depicted �. Evidently, g↓↓�r� and g↑↓�r� are relatively more

sensitive to �. At first sight, it may appear that g↑↓�r� should
not depend on � at constant rs as it represents correlations
due to the Coulomb coupling among electrons. Actually, with
increasing �, the kinetic energy for the minority-spin �↓�
component comes down while it goes up for the majority-
spin �↑� component. As a result, the ↓ spin electrons become
more correlated than the ↑ spin electrons. In turn, this di-
rectly affects the ↑↓ correlations even though rs remains con-
stant. This simple-minded picture explains the � dependence
of g����r�. To the best of our knowledge, the QMC results of
g����r� are not available for 0���1.
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FIG. 2. The pole position �0�q� /EF↑ vs q /kF↑ at selected � and
rs in the qSTLS approach. The pair of legends represent, respec-
tively, the values of � and rs; EF↑ denotes the Fermi energy for the
↑ spin electrons.
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FIG. 3. The spin-resolved pair-correlation functions g����r� vs
rkF↑ for �=0 at indicated rs. The curves are labeled in the same way
as in Fig. 1. For clarity, the results of spin-averaged pair-correlation
function g�r� �marked as “SA”�, and g↑↓�r� have been shifted ver-
tically by 0.2 and 0.4, respectively.
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FIG. 4. The spin-resolved pair-correlation functions g����r� vs
rkF↑ for rs=4 at indicated � in the qSTLS approach. For clarity, the
curves of g↓↓�r� and g↑↓�r� have been shifted vertically by 0.2 and
0.4, respectively.

KUMAR, GARG, AND MOUDGIL PHYSICAL REVIEW B 79, 115304 �2009�

115304-4



B. Static susceptibility and local fields

For having further insight into the behavior of electrons
near the instability �rs�rs

c�, we calculate the static �i.e., �
=0� susceptibility ��q ,0�, which can be obtained by diago-
nalizing the density response matrix as

���q,0� =
2�↑�q,0��↓�q,0�
D1�q� � �D2�q�

, �12�

where D1�q�=�↑�q ,0�+�↓�q ,0�, D2�q�= ��↓�q ,0�
−�↑�q ,0��2+4�↑↓�q ,0��↑�q ,0��↓�q ,0��2�, and ���q ,0� is
defined as

���q,0� =
��

0�q,0�
1 − ����q,0���

0�q,0�
.

In Eq. �12�, the “+” and “−” signs correspond, respectively,
to the in-phase and out-of-phase ��� modes of 	↑

ind�q ,0� and
	↓

ind�q ,0�. Equivalently, �+�q ,0� is the static density suscep-
tibility while �−�q ,0� the static spin susceptibility. The nu-
merical results of �+�q ,0� and �−�q ,0� at �=0 are given,
respectively, in Figs. 5 and 6 at selected rs. �+�q ,0� is also
compared with the available QMC data due to Moroni et
al.31 and the STLS results. Once again, we note that the
qSTLS predictions are in better agreement with the QMC
data. On the other hand, the QMC study is not available for
�−�q ,0�. However, both the qSTLS and STLS calculations
reveal that �−�q ,0� enhances with increasing rs and promi-
nently, the limq→0�−�q ,0� is found to diverge at rs�rs

c,
which indicates the existence of a spin-polarization transition
at rs�rs

c. Unlike the earlier STLS �Ref. 32� and qSTLS �Ref.
33� studies on the 3DEG, we could see �−�q ,0� actually
diverging due to the availability of self-consistent G����q ,��
at any desired rs. It may be recapitulated that rs

c is the critical
rs at which �����q , ��� exhibits poles for the first time, and
that, at rs

c, qc and �0�qc�→0. Noting that �−�q ,0�
� �	↑

ind�q ,0�−	↓
ind�q ,0��, the divergence of limq→0�−�q ,0�

simply reflects the emergence of pole in �����q , ��� at rs

=rs
c.
On the contrary, �+�q ,0� remains finite at rs=rs

c. This is
expected too as �+�q ,0�� �	↑

ind�q ,0�+	↓
ind�q ,0��, and there

occurs a perfect cancellation between the diverging 	↑
ind�q ,0�

and 	↓
ind�q ,0�. However, we find that the peaked structure in

the qSTLS �+�q ,0� grows monotonically with rs, and it is
eventually seen to diverge at q /kF↑�2.1, for rs�85 �see the
inset of Fig. 5�. This divergence in �+�q ,0� may be inter-
preted as a precursor of the occurrence of a liquid-Wigner
crystal34 phase transition. Interestingly, the predicted crystal-
lization density lies close to its recent QMC estimate �rs
�100� by Zong et al.13 However, the STLS �+�q ,0� does not
show any divergence. As can be seen from Eq. �12� and Fig.
7, the difference between the qSTLS and STLS predictions
arises entirely due to different behavior of the �static� LFC
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factors in the two theories. Furthermore, the � dependence of
���q ,0� �although not reported here� implies that the critical
rs, at which ���q ,0� shows divergence, is greatly reduced at
finite �. This seems to suggest that the partially spin-
polarized 3DEG may exhibit the magnetic or structural in-
stabilities at relatively lower rs values.

C. Ground-state energy

Equation �8� can be recasted to obtain the ground-state
energy �per electron� in reduced units as

Eg�rs,�� =
3

10rs
2�9�

4
�2/3

��1 + ��5/3 + �1 − ��5/3�

+ C	
0

rs

drs�	
0

�

dq�SCC�q,rs�,�� − 1� , �13�

where C= �2 / ��rs
2���9��1+�� /4�1/3. As discussed in Sec.

III A, although our results of S����q� are not reliable for
rs�rs

c, the resulting SCC�q� shows a good agreement with the
available QMC data. Since the computation of Eg depends
entirely on SCC�q�, we believe that our calculation of Eg
should be reliable also for rs�rs

c. Table I contains our results
of Eg at some representative values of rs and �, along with

the available QMC data8,13 and the results of Davoudi et al.21

Importantly, Eg depends weakly on � and therefore, the en-
ergy calculation demands high numerical accuracy to be able
to predict any polarization transition. To this endeavor, we
have tested comprehensively the accuracy of our results of
Eg, and the error �in Ry�� is of the order of 10−6 and 10−5 in
the STLS and qSTLS calculations, respectively. It is evident
from Table I that both the STLS and qSTLS theories predict,
in qualitative agreement with the QMC studies, a continuous
spin-polarization transition with increasing rs. Particularly,
the STLS theory shows that the ground state is paramagnetic
for rs�17 and the partially spin-polarized phases emerge
stable in the density window 17�rs�24, with the fully po-
larized phase becoming stable for rs�24.4 �see Fig. 8�. Ap-
parently, the STLS predictions are closer to the QMC study
of Ortiz et al.8 On the other hand, the qSTLS theory predicts
that the polarization transition sets in at rs�13. Initially, the
equilibrium polarization increases quite fast with rs but then
it stays nearly constant at ��0.8 for 20�rs�65. At rs
�70, the energies of the �=0.667, 0.8, and 1 states become
equal within the numerical accuracy. Clearly, higher accu-
racy is needed to resolve the relative stability of these states.
However, the emergence of poles in �����q , ��� for rs�rs

c

does not allow a better accuracy of Eg�rs ,��. Nevertheless, it
is gratifying to note that the qSTLS critical density for

TABLE I. The ground-state energy Eg�rs ,�� �in Ry� /e� at some representative values of rs and � in different schemes. STLS and qSTLS
from present calculations, OHB/QMC from Ortiz, Harris, and Ballone �Ref. 8�, ZLC/QMC from Zong, Lin, and Ceperley �Ref. 13�, and
DAPT from Davoudi, Asgari, Polini, and Tosi �Ref. 21�.

rs Different calculations �=0.0 �=0.2 �=0.333 �=0.667 �=0.8 �=1.0

10.0 OHB/QMC −0.106 −0.101

DAPT −0.10562 −0.10488 −0.10277 −0.09957

STLS −0.10585 −0.10571 −0.10546 −0.10425 −0.10351 −0.10198

qSTLS −0.1050 −0.1049 −0.1046 −0.1036 −0.1030 −0.1015

13.0 qSTLS −0.0868 −0.0868 −0.0869 −0.0868 −0.0865 −0.0857

13.5 qSTLS −0.0844 −0.0844 −0.0844 −0.0845 −0.0843 −0.0835

17.4 STLS −0.06983 −0.06984 −0.06984 −0.06979 −0.06974 −0.06955

18.5 STLS −0.06645 −0.06645 −0.06646 −0.06647 −0.06644 −0.06631

20.0 OHB/QMC −0.063 −0.0625

DAPT −0.06265 −0.06250 −0.06210 −0.06153

STLS −0.06233 −0.06234 −0.06236 −0.06240 −0.06240 −0.06232

qSTLS −0.0616 −0.0617 −0.0619 −0.0624 −0.623 −0.0619

24.4 STLS −0.05274 −0.05276 −0.05279 −0.05291 −0.05294 −0.05295

40.0 ZLC/QMC −0.035 237 48�60� −0.035 232 95�67� −0.035 205 39�67� −0.035 134 83�72�
DAPT −0.03470 −0.03467 −0.03459 −0.03450

STLS −0.03422 −0.03423 −0.03427 −0.03439 −0.03444 −0.03450

qSTLS −0.0336 −0.0338 −0.0340 −0.0344 −0.0344 −0.0342

50.0 ZLC/QMC −0.028 899 00�62� −0.028 899 62�68� −0.028 888 35�62� −0.028 849 83�81�
OHB/QMC −0.029 −0.0288

DAPT −0.02845 −0.02844 −0.02839 −0.02834

STLS −0.02797 −0.02798 −0.02801 −0.02812 −0.02816 −0.02821

qSTLS −0.0275 −0.0276 −0.0277 −0.0281 −0.0281 −0.0279

70.0 ZLC/QMC −0.021 314 29�41� −0.021 316 21�39� −0.021 315 93�37� −0.021 306 67�37�
qSTLS −0.0201 −0.0202 −0.0203 −0.0205 −0.0205 −0.0205
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�nearly� full polarization is much closer to the QMC study of
Zong et al.13 Furthermore, it is seen from Table I that the
present results are in good agreement with the QMC data and
the results of Davoudi et al.21 at low rs. However, the agree-
ment somewhat diminishes with increasing rs, and the results
of Davoudi et al.21 remain relatively closer to the QMC data.
Furthermore, we note that the spin susceptibility and ground-
state energy calculations reveal polarization transition at
markedly different rs. This mismatch reflects the violation of
the spin-susceptibility sum rule32,33 and it constitutes a
known drawback of the qSTLS and STLS approaches.

D. Spin-resolved correlation energy

The total correlation energy Ec�rs ,�� can be decomposed
into the ↑↑, ↓↓, and ↑↓ contributions as

Ec�rs,�� = E↑↑
c �rs,�� + E↓↓

c �rs,�� + E↑↓
c �rs,�� . �14�

E���
c is obtained by subtracting the exchange energy, E���

ex =
−�3���� /4�rs��9� /4�1/3�1+ �−1���↓��4/3, from the corre-
sponding potential energy E���

pot . The numerical results of
E���

c �rs ,�� and the resultant Ec�rs ,�� are given in Figs.
9�a�–9�c� at selected �, along with the available QMC results,
as fitted analytically by Gori-Giorgi and Perdew.20 Notably,
both the qSTLS and STLS approaches somewhat underesti-
mate the ↑↑ and ↓↓ correlation energies, whereas the ↑↓
correlation energy is overestimated. Interestingly, the under-
estimation in the former is almost exactly canceled out by
the overestimation in the latter, with the result that the total
correlation energy Ec�rs ,�� is found to be in very good agree-
ment with the QMC results. Furthermore, we note that the
evolution of unphysical poles in �����q , ��� also reflects in
the behavior of E���

c �rs ,��, and our predictions of E���
c �rs ,��

are not reliable for rs�rs
c. Therefore, we cannot testify the

recent prediction of the positivelike spin-correlation energy
at low density by Gori-Giorgi and Perdew.20 However, the
total correlation energy Ec�rs ,�� continues to remain well
behaved and close to the QMC data for rs much beyond rs

c

�see Fig. 9�d��. Thus, we find that the STLS ansatz captures
nicely the spin-averaged properties of the 3DEG but it is not

that good in handling the spin-resolved correlations.

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a theoretical study of
spin-resolved correlations in a 3DEG having arbitrary spin
polarization � by using the STLS and qSTLS approaches.
The spin-resolved pair-correlation functions and correlation
energies, static density and spin susceptibilities, and ground-
state energy are calculated at selected � over a wide range of
rs. Wherever available, our results are compared with the
QMC results. Quite generally, the results of qSTLS approach
are found to be in better agreement with the simulation data.
In particular, the improvement over the STLS predictions has
been seen to become quite prominent with the increasing
value of rs. This result clearly underlines the growing impor-
tance of the dynamical nature of correlations with increasing
rs. However, we encounter a critical rs �namely, rs

c� in both
the STLS and qSTLS calculations, at and above which it
becomes difficult to compute the self-consistent S����q�. As
an important finding, we have resolved that this difficulty is
related to the emergence of unphysical poles in �����q ,�� on
the imaginary � axis for 0�q�qc. We have developed a
purely mathematical procedure for handling these poles, us-
ing, which we were able to find, the self-consistent S����q�
for rs beyond rs

c. It turned out that, although the qSTLS and
STLS approaches break down in describing the spin-resolved
correlations for rs�rs

c, they provide a fairly good description
of the spin-averaged correlations. Building upon this result,
we have calculated the ground-state energy for rs far beyond
rs

c as its calculation relies solely on the total charge-charge
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structure factor SCC�q�. A comparison among the results of
ground-state energy at different � reveals, in qualitative
agreement with the recent QMC studies,8,13 a continuous
spin-polarization transition on increasing rs, with the par-
tially spin-polarized phases becoming stable over a definite
range of rs. As another interesting result, it is found that both
the qSTLS and STLS methods underestimate the parallel
spin-correlation energy while the antiparallel spin contribu-
tion is overestimated to the extent that the total correlation
energy is in excellent agreement with the QMC data. We

believe that this result might be useful in further develop-
ment of the theory of electron correlations.
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